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Abstract—This paper proposes a novel data driven continuously 

evolvable Bayesian Net (BN) framework to analyze human 

actions in video. In unpredictable video streams, only a few 

generic causal relations and their interrelations together with the 

dynamic changes of these interrelations are used to 

probabilistically estimate relatively complex human activities. 

Based on the available evidences in streaming videos, the 

proposed BN can dynamically change the number of nodes in 

every frame and different relations for the same nodes in 

different frames. The performance of the proposed BN 

framework is shown for complex movie clips where actions like 

hand on head or waist, standing close, and holding hands take 

place among multiple individuals under changing pose 

conditions. The proposed BN can represent and recognize the 

human activities in a scalable manner  
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I.  INTRODUCTION 

For most situations the human action in an uncontrolled 

scenario is unpredictable and valid only probabilistically. To 

account for the uncertainty we need probabilistic models to 

represent and recognize human action. Bayesian Net (BN) is 

widely known as one of the frameworks to systematically 

handle uncertainty and they have received some success in 

human action recognition, specifically dynamic BN (DBN) in 

recognizing a small set of predefined activities in heavily 

constrained videos [4]. 

Due to the unpredictability in streaming data, it is not 

possible to account for every possible continuous action 

pattern. Furthermore, it is also not a scalable solution. For 

example, in a college patio, typical student activities may be 

walking, standing, talking to a person, talking over phone, 

biking, skateboarding, etc. The complexity in such a scenario 

comes from several factors. (a) Each action has a different 

model. (b) These models may be slightly different for different 

persons, i.e., different persons do the same actions differently. 

(c) Every person does not perform all the activities at the same 

time (e.g., a person skateboarding cannot do biking at that 

time). In such a monitored environment, the set of 

persons/activities may change dynamically, unpredictably and 

uncontrollably. 

In such an unconstrained situation, analyzing human actions 

are very challenging computer vision and pattern recognition 

task. For BN based probabilistic action analysis, the brute 

force method with exhaustive model of all persons/activities 

considered, will have a large number of redundant nodes for 

the persons or activities not actually present or occurred. The-

state-of-the-art BNs suffer from the combinatorial explosion 

[5] for the case with unpredictably changing set of performers. 

For such an application of BN, we need a new framework 

where, (1) the number of (micro) event and (macro) action 

nodes for a particular time and particular person can be 

instantiated online based on current evidences, (2) the 

relations among these nodes can change over the time and 

from person to person, and (3) there are causal dependencies 

across the time for dynamic events and activities. None of the 

state-of-the-art Bayesian Net frameworks satisfies all these 

properties simultaneously. 

This paper proposes a novel Bayesian Net, namely Structure 

Modifiable Adaptive Reason-building Temporal Bayesian 

Network (SmartBN) that has the following unique properties.  

(1) It is flexible in the number of nodes in individual frames 

despite temporal connections across the frames. DBN 

cannot accommodate it.  

(2) It is flexible in the relations between nodes, as the same 

two nodes may have different causal relations in two 

consecutive frames (DBN does not allow it).  

(3) Its structure is continuously evolved online with the 

evidences that are present in the streaming data.  

Key contributions: (1) A novel BN framework (SmartBN) 

suitable for unpredictable dynamic processes, (2) Use of 

SmartBN in a challenging computer vision/pattern recognition 

task, a video based event and human action recognition, and 

(3) Experimental results on various complex video datasets. 

II. RELATED WORK AND MOTIVATIONS 

A. Related Works 

Table 1 shows probabilistic graphical models that have been 

used for human actions modeling. 

Some of the non-graph-based approaches use periodicity 

[11], motion history [8], angular relations [12], or 

discontinuity in optical flow [14] and keep a log of activities 

[10] in multi-activity cases [9].  

Non-graphical approaches do not handle uncertainty in 

systematic manner and use single periodic activity per video 

[11, 8, 12] and/or very constrained environment with known 

performers/activities [9, 10, 14]. Graphical approaches of 

Table 1 handle uncertainty of occurrence of known activities 

and known number of performers. But in typical activity 

analysis, like the student activity mentioned earlier, neither we 



know the number of performers, nor the activities actually 

taking place. Hence fixed structures of graphical models in 

Table 1 are too constrained to fit unpredictability in streaming 

activity data. Note that, EBN [16], although expandable for a 

single frame, does not support temporal causality across them, 

and hence not applicable for activity analysis. It does not also 

allow evolution of relationships (see Sec 3.1) between the 

same two nodes in consecutive frames. 

TABLE I.  REVIEW OF GRAPH-BASED VIDEO ACTIVITY ANALYSIS 

Working Principle Limitations 

DBN, switching linear dynamic systems, 

learning of parameters, walking/jogging [1] 

Structure fixed 

for known cases 

Triangulated graphs, walk modeling, entropy 

based structure,  greedy search [2] 

Variable set is 

known a priori 

Body-part BNs added to get hierarchical BN 

of the body, temporal links [3] 

2 humans, fixed 

structure 

DBN, sports, classify by skeleton-tips [4] Known structure 

Probabilistic hierarchy, blob clustering, 

Kalman tracking, HMM, single periodic 

activity per video, parameter learning [5] 

Periodic single 

activity, known 

structure. 

Parallel HMM, body part activity, parameter 

learning, graph pattern matching [6] 

Known activities 

& fixed nodes 

Trajectories in high dimension, learning 

densities in augmented HMM [7]  

Expected actions 

with constraints 

PCA based projected trajectories, HMM 

pattern learning, tracking, analysis [13] 

Known node 

structures 

Conditional Random Fields (CRF) for 

gesture recognition [21] 

 Fixed nodes & 

relations. 

B. Motivations for this work 

There are two types of uncertainties for human activity 

analysis in streaming videos in uncontrolled environment:  

Case (a): The uncertainty of the presence or absence of 

human performers and their activities, where we have prior 

knowledge with certainty about the entities, i.e. who are 

expected to be present/absent and exactly what activity types 

we are expecting from each of the performers. In this case, 

even with the absence of some performers or activities, we can 

have dummy nodes or place holders for them in the DBN and 

keep on considering them for all the time with the expectation 

that they can appear any time. This method is not efficient and 

not scalable in complexity [5] or personal subtleties in 

activities [8]. 

Case (b): Besides the uncertainty of the presence or absence 

of humans and their activities (as in case (a)), there is 

uncertainty in the identity and number of the performers and 

the activities. That means, we have no prior knowledge even 

about the entities, i.e. we do not know who are expected to be 

present in the videos, and what they are expected to do. So 

here, we cannot even use the place holder nodes in the DBN as 

we don’t have any idea how many places to hold. In these 

cases, we often have very generic causal patterns (lowest level 

events like, entity moving, two entities are close, etc.) that can 

gradually integrate over multiple abstraction levels to form the 

complete activity model.  

In this paper we consider case (b). As DBN or other state-

of-the-art BNs are inadequate [19], we use a novel 

continuously evolvable SmartBN framework, and an 

Expansion-Instantiation (EI) principle to analyze human 

activities in video. The proposed framework provides unique 

flexibility of online instantiation and continuous evolution 

with the streaming evidences. It is scalable and can also 

handle the case (a). 

III. SMARTBN FRAMEWORK  FOR HUMAN ACTIVITIES 

We consider a typical uncontrolled environment, where we 

do not have prior knowledge on the following: 

(1) Numbers of persons expected to be present, 

(2) Number of persons actually present, 

(3) Types of activities expected in videos, 

(4) Types of activities actually performed by a person, 

(5) Order of the events and activities, 

(6) Interrelations between the activities. 

The lowest level events are entity moving, entities 

close/distant, etc. and their causal structures. Particle filters are 

used for tracking body parts. Generic causalities at multiple 

abstraction levels integrate lowest level events to model 

complex human activities, like pose change, shifting person, 

talking, grabbing, etc. 

The evidences from streaming videos at any stage provide a 

dynamic set of random variables comprising of: (a) visible 2D 

features (body-parts) of the currently present persons, (b) 

inter-feature distances between visible features (of the same 

and/or different persons), (c) low-level events actually 

observed, and (d) high level activities actually detected in the 

current frame. This dynamic set forms the “individual”, as 

referred by the proposed SmartBN framework in the rest of 

this section. 

A. SmartBN & Expansion-Instantiation 

The key ideas of SmartBN framework and the principle of 

Expansion-Instantiation (EI) are: 

(1) Identifying generic causal relations (we call them 

causal templates) that best represent the relational 

building blocks of a process. 

(2) Expanding/replicating these causal templates to 

represent each individual with current evidences. 

(3) Instantiating the SmartBN structure for a sliding 

window of few frames (to accommodate temporal 

causalities) over the streaming sequence of frames. 

In a broader sense, there may be four possible types of 

causal templates, as described below. 

Expandable templates: These are the uncertainty relations 

based on the evidences for a single individual in a single frame 

only; for example, the interrelations between body-parts of the 

same person. 

Dynamic templates: These are the uncertainty relations that 

model the causalities from multiple “individuals” or frames to 

model dynamic (e.g., body-part motions) or inter-person (one 

grabbing other) processes. 

Evolvable templates: These are uncertain relations that have 

the capability of online evolution over time, based on 

changing evidences in the streaming data; for example, when a 

person is explaining, he/she may explain to different persons 

over the frames. Thus, listening activity may evolve with time. 

Interrelation templates: These are conditional causal 



relations. They may influence themselves or others to be 

present or absent or change; for example, the absence of the 

head of a person in one of the two consecutive frames initiates 

“exit” or “entry” event for the person, while absence of other 

body parts initiate  “body-part pose change” event. 

In the rest of this section, we describe models of different 

activities and give the causal template type they belong to in 

the SmartBN for human activity analysis in video. 

B. Human Activities Considered 

In this work, we have considered the following human 

activities, in ascending order of complexity: 

Events: Entry (Y) or exit (X) of a person; moving (V) or 

changing pose (P) of body-parts; hand on own head/waist (O); 

and standing close to other person (C). 

Activities: Person moving (S), changing pose (Q), holding 

something (K), grabbing other person by hand(s) (G), talking 

(T), listening (B), explaining (E). 

In SmartBN instantiation for these events/activities we take 

a bottom-up approach to show how the low-level inter-feature 

distances are integrated to define first the micro-level events 

and then the macro-level human activities in a hierarchical 

fashion. 

As most of the events and activities discussed in this paper 

in some way depend on distances between body-parts and 

(dis)similarities among them, we start with two threshold 

based probability models and the subscript conventions (for 

persons/body-parts) used in this paper. 

C. Notations and Probability Models 

Subscript notations: In this paper, the subscripts denote 

the persons (ID) and body-parts (BP) involved in the 

event/activity; the numbers (ID: 1, 2, 3) denote persons, and 

the letters (BP: Head: H, Right-hand: R, Left-hand: L, Waist: 

W) denote the body-parts. 

Superscript notations: The superscripts in the event or 

activity notations denote the frame number concerned. 

Probability Models: We use δ, the distance (between two 

body-parts) or the dissimilarity (between two magnitudes or 

directions), to define two thresholds (θ) based probability 

models, in eqn (1) and (2). From data, δ is computed 

automatically and θ is decided from anthropometry [15]. To 

define a probability model for “how close or similar two 

entities are” we use the probability model TPM1 in eqn (1). 

Note that Pr (.) = 0 for δ > θ, and Pr (.) monotonically 

increases inside the range (0, 1) for δ ≤ θ.  
( )
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To define a probability model for “how distant or dissimilar 

two entities are” we use probability model TPM2 in eqn (2) 

where, Pr (.) = 0 for δ < θ and Pr(.) increases monotonically in 

the range (0, 1) for δ ≥ θ. 
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D. Features, Relations and Interrelations 

• Visible body parts (BP): 2D features 

Four body-parts represent each person (see Fig 1(a)): head 

(H), waist (W) right hand (R) and left hand (L). We take the 

2D positions of visible body parts to be the root nodes (see Fig 

1(b)) with probability 1. The probability is defined by fitting 

2D Gaussian to the 2D histogram of the positions in real time. 
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Figure 1.   (a) Illustrations of visible body-parts BP’s of person ID1 (Hn1, 

Rn1, Ln1, and Wn1) and person ID2 (Hn2, and  Ln2) and inter-body-part 

vector DnH,R,1 between head and right hand of person ID1 in nth frame. (b) 

Body-parts (BP: H: head, R: right hand, L: left hand, W: waist). (c) 

Expandable causal template for relations between body-parts. DnBP1, BP2, 

ID is the difference vector between body-parts BP1 and BP2 of ID1 in nth 

frame. 

• Interrelations (D): among the body-parts  

The difference vectors (as illustrated in Fig 1(a)), defined by 

the distances (D) and angular directions ( D∠ ), between two 

body-parts (BP) of the same person define the pose of the 

person. These distances (D) are normalized by the distance 

between the head and the waist (N) to make the D’s invariant 

to distance of the person from the camera. The causal template 

of D’s is shown in Fig 1(c), with conditional probabilities 

equal to 1. Note that, this is an expandable causal template, 

and based on the visible body-parts of a person, this template 

is expanded or replicated and instantiated. 
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Figure 2.   (a) Illustrations of event MnH,R,1 (for changing relations from 

Dn-1H,R,1 and DnH,R,1 between the head and the right hand of person ID1) 

and event VnL,1 (for moving left hand of person ID1 from Ln-11 to Ln1) in 

nth frame. Expandable and Dynamic causal templates for body-parts: (b) 

MnBP1, BP2, ID for changing interrelations from Dn-1BP1, BP2, ID to 

DnBP1, BP2, ID, (c) VnBP, ID for moving body-part from BPn-1ID to 

BPnID across the frames. 

• Changing interrelations (M): among the body-parts 

If the body-part distances (D’s) change across the frames by 

more than a threshold, then corresponding relations are 

changing (M’s). We use TPM2 of eqn (2) for the conditional 

probability and the expandable and dynamic (as it takes 

information from the previous frame also) causal template as 

shown in Fig 2(b). The template will be used to instantiate in 

SmartBN online, only when the event occurs. DBN does not 

have such flexibility. 
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Figure 3.  Illustrations of events (a) entry of person ID3 (appearing head 

Hn3) and (b) exit of person ID1 (disappearing head Hn-11); interrelation 

causal templates of (c) Event YnID, and (d) Event XnID for person ID in the 

nth frame. 

E. Low-level Events 

• Event Y: Entry of a person 

When we don’t see the head of a person, we say that person 

is absent in the frame. And we define entry (Y
n

ID) of a person 

ID, when we have head (H
n

ID) of the person in current n
th 

frame, but no (H
n-1

ID) in the previous (n-1)
th

 frame. It is an 

interrelation causal template, because the absence of the 

evidence in another frame instantiates the causal relation in the 

current frame (see Fig 3(a) & (c)). So event Y is Boolean with 

conditional probability 1 or 0. 

• Event X: Exit of a person 

Similarly, if head was seen in the last frame (H
n-1

ID), but not 

in the current frame (Fig 3(b)), then the person ID has exited 

from the scene (event X
n

ID). It has an interrelation (like Y) and 

dynamic (multi-frame evidences) causal template (Fig 3(d)) 

with Boolean conditional probability. 

• Event V: Moving body parts  

 When 2D positions of the body parts (BP’s) of a person 

change across the frames by more than a threshold, moving-

body-part events (V’s) take place (see Fig 2(a)). The causal 

template of V’s (in Fig 2(c)) is expandable and dynamic (just 

like M’s). TPM2 (eq. (2)) defines the distance-based 

conditional probability of V’s. 

• Event P: Pose change of a particular body part 

If the changing interrelations (M’s) between the same body-

parts (BP1 and BP2) persist for more than one consecutive 

frames, then the poses of these particular body-parts have 

changed (event P’s). As evidences from multiple frames are 

concerned, P’s have an expandable and dynamic causal 

template (see Fig 4(a) & (b)) with the probability model in (3). 
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• Event O: Hand on own head/waist 

When the right/left hand and the head/waist for the same 

person are close, hand-on-head/waist event (O’s) take place. 

The evidences being only from the current frame, O’s have 

expandable causal template (see Fig 4(a) & (c)) instantiated 

online for the involved body-parts. The closeness and eqn. (1) 

define the conditional probability. 
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Figure 4.   (a) Illustrations of pose change (from Mn-1
H,L,1 to Mn-1

H,L,1) between 

the head and the left hand; and the event On
H,L,1 for the left hand on the head 

for person ID1 in nth frame; (b) Expandable and dynamic causal template of 

the event Pn
BP1,BP2,ID for the pose change between body-parts BP1 and BP2 of 

person ID. (c) Expandable causal template of the event On
BP1,BP2, ID for the 

hand BP1 on the body-part BP2 (head or waist) of person ID. 

• Event C: Standing close to other person 

When the heads and/or waists of two persons are close (see 

Fig 5(a)), the standing-closely events (C’s) take place. As this 

depends on different persons, although from the same frame, 

the causal template (in Fig 5(b)) is dynamic. This is also 

expandable because both head and waist pairs may be close. 

Unlike DBNs, SmartBN can instantiate dynamic links, even 

for different visible body-part structures of different persons. 

The closeness and eqn (1) define its conditional probability. Its 

value is raised to 1 when both heads and waists are close.  
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Figure 5.   (a) Illustrations of the event Cn1,3 for persons ID1 and ID3 

standing closely and the actiivity Sn2 for person ID2 moving from the moving 

body-part events (VnH,2, VnR,2, VnL,2, & VnW,2). (b) Dynamic and 

expandable causal template of the standing-closely event CnID1, ID2 for 

persons ID1 & ID2, (c) Expandable causal template of the shifting activity 

SnID for person ID from the body-part motion (VnBP, ID) for the nth frame. 

F. Higher level human activities 

• Activity S: Person moving or shifting 

For a person ID, if every visible body parts (BP’s) are 

moving (V
n

BP,ID) (see Fig 5(a)), then the person is shifting 

(activity S
n

ID). The activities S’s have an expandable causal 

template (see Fig 5(c)) that expands with the number of visible 

body parts. Its probability in eqn. (4) is the geometric mean of 

the conditional probabilities of V’s (see Sec 3.5.3) of all 

visible BP’s. 
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• Activity Q: Pose change of a person 

If some of the body parts (BP’s) of a person ID appears or 

disappears or the changing interrelation (M’s) between BP’s in 

the last frame is discontinued (see illustration in Fig 6(a)), then 

the pose of ID is changing (activity Q’s). Due to conditional 

Y
n

ID 

Hn-1
ID Hn

ID 

X
n

ID 

Hn-1
ID Hn

ID 

(a) (b) 

Hn
3 

Hn-1
1 

C
n

ID1, ID2 

BPn
ID1 BPn

ID2 

S
n

ID 

Vn
BP, ID 

Vn
H, 2 

V Vn
L, 2 

V 

Cn
1, 

Vn
R, 2 

V 

Vn
W, 2 

V 

Sn
2 

V 

(a) 

V 

P
n

BP1, BP2, ID 

Mn-1
BP1, BP2, ID Mn

BP1, BP2, ID 

O
n

BP1,BP2, ID 

BP1n
ID BP2n

ID 

Mn-1
H,L,1 Mn

H,L,1 

On
H,L,1 

(a) 



relations across the frames, it has interrelation causal 

templates (shown in Fig 6(b)-(d)). The conditional probability 

is the number of current evidences (BP’s or M’s) supporting 

the activity Q, normalized by all possible such evidences for 

visible body-parts. 

Figure 6.  Illustrations of pose changes, Qn-12 of person ID2 (due to 

appearing right hand Rn-12) in (n-1)th frame, and Qn1 of person ID1 (due to 

transient interrelation change Mn-1H,L,1 between the head and the left hand) 

in nth frame. Interrelation causal templates of the activity QnID for person ID 

in nth frame when (b) body part BPnID appears, or (c) body part BPn-1ID 

disappears, or (d) transient change Mn-1BP1,BP2,ID in the last frame 

discontinued. 

• Activity K: Holding something by both hands 

The activity K’s are encountered when both hands of a 

person are close to each other (see Fig 7(a)) and EI instantiates 

the expandable causal template in Fig 7(c) in the SmartBN. 

The closeness of hands and TPM1 in eqn (1) defines 

conditional probabilities of the activities, K’s. 

• Activity G: Grabbing other person by hand(s) 

When the right and/or left hand of a person ID1 is close to 

any body-part (BP’s) of another person ID2 (see Fig 7(b)), we 

say that ID1 grabs ID2 (G’s). Due to the evidences coming 

from two persons, G’s have dynamic causal template (Fig 

7(d)). It can expand for two hands of ID1 or two body-parts of 

ID2. DBN cannot handle such online evolution, while 

SamrtBN can. The conditional probability uses TPM1 in  (1). 
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Figure 7.  Illustrations of (a) Kn2: ID2 holding something and (b) 

GnR,L,2,R,1: ID2 grabbing ID1’s right hand by his both hands. (c) 

Expandable causal template of the activity KnID for the person ID. (d) 

Dynamic and expandable causal template of the activity GnBP1,ID1,BP2,ID2 

for ID1 grabbing ID2’s BP2 by ID1’s BP1. 

• Activity T: Person talking 

  It is hard to define talking by only video data, while much 

easier with audio. We use the fact that, often, when a person 

talks his hand(s) move in an explaining fashion, continuously. 

Hence we relate continuous body-part pose change (P’s) of the 

hands to the talking activities (T’s) (see Fig 8(a)). The causal 

template of T’s (shown in Fig 8(b)) expands with number of 

supporting evidences (EV1) of P’s. Conditional probability (or 

belief) of T is the number of EV1, normalized by the number of 

all possible evidences (EV2) for T, (i.e., D’s with the talker’s 

hand(s)). 

Figure 8.   (a) Illustrations of pose change of right-hand, PnH,R,1 (in white 

arrows) defining talking activity Tn1 of person ID1; motion direction of ID1’s 

right hand (in green arrow) detecting listening activity Bn3,1 of person ID3; 

and Tn1 and Bn3,1 defining activity En1,3 for ID1 explaining ID3. (b) 

Expandable causal template of the activity TnID from hand-pose changes 

PnBP1,BP2,ID for person ID in the nth frame. (c) Evolvable and interrelation 

causal template for the activity BnID2,ID1: ID2 is listening to ID1, from 

VnR/L,ID1 motion direction of ID1’s hand and the vector direction between 

ID1’s hand R/LnID1 and ID2’s head or waist H/WnID2. 

• Activity B: Person listening 

If a person ID1 is talking, then the listener ID2 is decided 

by closeness of the direction of the hand-motion, to the 

directions of the vectors between the moving hand and the 

other persons’ heads/waists. The person(s) ID2 satisfying a 

directional similarity is the listener for the listening activities 

(B’s). This is an indirect method, but often works fine (see Fig 

8(a)). Directional similarity and TPM1 (in eqn (1)) define the 

conditional probability in eqn (5). The set of listeners for the 

same talker may change/evolve and expand (based on which 

hand(s) is/are moving and towards whom), and B’s have an 

evolvable and interrelation (because it is instantiated only 

when there is a node T) template of Fig 8(c). 
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• Activity E: Explaining to the listener 

If a person ID1 is talking and person ID2 is listening to ID1 

(see Fig 8(a)) then ID1 is explaining to ID2 (activity E
n

ID1, ID2). 

With the variable set of detectable listeners, the evolvable 

causal template of activity E (in Fig 9) can change across the 

frames.  Its conditional probability is the geometric mean of 

the beliefs of its parent nodes (from eqn (5) and Sec 3.6.5). 

IV. EXPERIMENTAL RESULTS 

A. Activity Data 

Most of the publicly available human activity data suffers 

from (more than) one of the following: (a) single activity per 

video sequence, (b) constrained environment, (c) single 

person, (d) activities with known structures, and (e) unnatural 

breaks in multi-activity flow. To the authors, movie clips are 
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Figure 9.  Evolvable causal tempale of the 

activity EnID1,ID2: talker ID1 is explaning 

to listener ID2. 
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Figure 10.    Video Data and Tracking Results of actions using Particle Filters. (a) 2 person (b) 3 person (c) 4 person. Four body parts(head, two hands,  and 

waist)are tracked by Particle Filters. The approximate location of each body part for each person is shown in different color (person 1: white, person 2: yellow, 

person 3: blue, person 4: red) 

the most natural and unbiased video with uncontrolled and 

unconstrained continuous flow of multiple human activities 

without any predictable patterns. Hence we have used movie 

clips, taken in uncontrolled outdoor environment with 

minimum zooming effects and with all the activities described 

in Sec 3.2 (see Fig 10 and Fig. 11). 

B. Tracking of Body Parts and Parameters 

The method for tracking body parts is sequential Monte 

Carlo (SMC) also known as Particle filter [20]. The main 

inputs are AVI video and the initial location of the point to be 

tracked. Other parameters (fixed for all the examples 1-6) are: 

(1) number of particles: 1200; (2) color cues parameters (i.e. 

amount of noise in the image and number of bins) : 8 Bins for 

HSV, Measurement Color Noise: 0.2; (3) redistribution 

threshold : 7*1200/10; (4) initial state covariance : 30
1

=xσ , 

2
1

=vxσ , 30
1

=yσ , 2
1

=vyσ , 2
1

=Hxσ , 2
1

=Hyσ ;     

(5) position covariance : 5.0=yσ . Tracking of body parts 

[17] is implemented using color HSV values and computing 

its likelihood based on Bhattacharya distance.  

From generic anthropometric relations [15], we decided the 

thresholds for the activity definitions. For the events O and C 

and the activities K and G, we have used (θO = 30), (θC = 50), 

(θK = 20) and (θG = 30) respectively, all in normalized pixel 

distance. For the event M, threshold (θM = θF*θD = 15*30) is 

used, where θF is in normalized pixels for magnitude changes 

in D’s and θD is in degrees for directional changes. For the 

activity B, we use directional similarity threshold of θB = 60º. 

All these parameters are fixed for all the examples 1-6. 

C. Examples 1-3:  

The data shown in Fig. 10 is used for activity recognition. 

We use video clips of 100 frames with interactions among 

two, three and four people.  The results of tracking body parts 

by particle filters are shown in Figure 10. This method is 

robust in tracking head and waist. However, it fails to track 

both hands accurately since these parts experiences quick 

changes. The failure stems from particles not spreading out in 

a larger area and particles not able to keep up with the pixel 

movement. Other causes of failures are occlusion and contact 

between other body parts (i.e. hand touching head and 

particles stays on the head). The results of some activity (O, C, 

K) recognition are shown in Table 2. While these results are 

acceptable it is to be noted that the activity recognition results 

depend on the quality of tracking body parts. 



TABLE II.  PERFORMANCE COMPARISON: NUMBER OF TIMES DETECTED 

 

Figure 11.  Sample Frames from a video data with 1855 frames. 

D. Evolutions of SmartBN Structures 

Due to the flexibility of the proposed SmartBN, and the 

data-driven EI instantiations, SmartBN structure varies widely 

across the frames. Unlike DBN or HMM, we do not have to 

keep place holders for activities or events that are absent in the 

current frame, but may be encountered in future frames. Note 

that, DBN or HMM does not support this flexibility. We show 

three examples of SmartBNs in Fig 12-14. We use a video clip 

with 1855 frames (see samples in Fig. 11) of size 640 x 480 

pixels. Here we used only the 42 key frames [18] for tracking 

body parts. The square nodes are the new coming nodes for 

the current frame or the missing nodes from the previous 

frame, showing the evolution of the SmartBN structure. For 

better display, we drop the superscript and add the subscript 

‘p’ for the previous frame or ‘c’ for the current frame. 

Example 4: The key activities in the frames shown in Fig 

12 are: person ID2 moves his hands (V’s), and grabs ID3 by 

his neck (GL,2,H,3), that changes pose of ID3 (Q3) also. The 

SmartBN for the n
th

 frame is shown, with types of the nodes 

identified with different colors for different persons. Note that: 

(a) ID3 has different sets of body-parts (BP’s) and inter-

relations (D’s) for (n-1)
th

 and n
th

 frames. (b) There is pose 

change node for ID3 but not for ID1. (c) The events/activities 

like shifting, talking, listening, explaining have no nodes due 

to the absence of these activities in the current frame. 

Example 5: The key activities in Fig 13 are: ID3 talks (T3) 

with hand pose changing continuously (P’s) with ID2 

changing pose (Q2). In the SmartBN for the n
th

 frame, note 

that: (a) some of the nodes of example 1, like closely-standing 

node (C2,3) are now absent, (b) talking activity node T3 is 

added, (c) but no particular listener is decided and hence no 

nodes for listening (B’s) or explaining (E’s). 

Example 6: The key activities in Fig 14 are: ID1 talks (T1) 

and explains (E1,3) to ID3 (B3,1); ID1 and ID2 change pose (Q1, 

Q2). In the SmartBN for n
th

 frame, note that, (1) node Q3, and 

T3 disappears (compared to Fig 13), and (2) nodes like Q1, T1, 

B3,1, and E1,3 newly appear. 

                

 

Figure 12.  Example 1: SmartBN for nth frame shown. Activities: moving 

body-parts, pose change, holding, grabbing, closely standing, and hand on 

waist. Color-coding: Red: ID1, Green: ID2, Blue: ID3, Black: inter-person 

activities. 

 

               

 

Figure 13.  Example 2: SmartBN for nth frame shown. Activities: hand pose 

change, hand on waist, and talking. Color-coding: Red: ID1, Green: ID2, 

Blue: ID3, Black: inter-person activities. 

Discussion: From the examples 4-6 it is clear that, unlike 

DBN, proposed SmartBN framework supports dynamic causal 

links like one from M1LWp (in the previous frame) and M1LWc 

(in the current frame) to P1LW (in the current frame) in Fig 14, 

despite different node structures for these consecutive frames. 

The scalability advantage of SmartBN becomes more evident 

when we consider the entire activity structures of different 

frames, as shown in Fig 12-14. The event or activity nodes of 

SmartBN are instantiated only when those actually occur (see 

Data Example 1: 2 PERSON Video Data (100 Frames) 

Activity/Event Ground truth Correctly Detected False-alarm Missed 

O: Hand on H/W 240 211 88% 34 29 

C: Standing close 160 114 71% 28 46 

K: Holding 32 17 53% 12 15 
Data Example 2: 3PERSON Video Data (100 Frames) 

O: Hand on H/W 470 317 67% 126 153 

C: Standing close 196 100 51% 64 96 

K: Holding 180 162 90% 74 18 
Data Example 3: 4 PERSON Video Data (100 Frames) 

O: Hand on H/W 386 276 72% 114 110 

C: Standing close 178 124 70% 68 54 

K: Holding 290 279 96% 98 11 
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Examples above). Unlike DBN or HMM, SmartBN could 

continuously evolve online and model the video activity in a 

very scalable manner. 

               

 

Figure 14.  Example 3: SmartBN for nth frame shown. Activities: hand pose 

changing, hand on waist, body pose changing, talking, listening, and 

explaining. Color-coding: Red: ID1, Green: ID2, Blue: ID3, Black: inter-

person activities. 

TABLE III.  PERFORMANCE COMPARISON: NUMBER OF TIMES DETECTED 

 

The performance of SmartBN for human events and 

activities for examples 4-6 is shown in Table 3. For simple 

events (Y, X, O, C) the results are very good (100% for all 

except O); for the activities with direct observations (S, Q, K, 

G) the results are acceptable (more than 60% for all except K); 

and for the activities (T, B, E) that are indirectly observed the 

results are fair. Performance of O and K can be improved if 

we take the tip (instead of the wrist) of the hands as 2D 

features, while considering more directional tolerance (θD = 

60°) will reduce the number of missed Q’s. Detection of 

indirectly observed activities T, B, and E can be improved 

with higher spatial/temporal resolutions since for examples 4-

6 we only used the key frames. 

V. CONCLUSIONS 

We proposed a novel continuously evolvable BN 

framework, SmartBN that is scalable and can self-modify to 

represent an unpredictable dynamic process. We use it to 

analyze human activities in real video clips of movies which 

are a significant challenging task. Various experiments are 

presented to demonstrate the efficacy of the proposed 

approach for detecting continuous unpredictable human 

activities, including inferring some high level semantic 

information from video only. We have shown the SmartBN 

variation over the image-frames in Fig 12-14. In the future we 

plan to work on automated learning of (a) causal templates and 

(b) event thresholds.  
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C: Standing close 21 21 100% 6 0 

S: Shifting person 10 6 60% 0 4 

Q: Pose change 53 39 74% 5 14 
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